Rotational constants and structure of para-difluorobenzene determined by femtosecond Raman coherence spectroscopy: A new transient type.
نویسندگان
چکیده
Femtosecond Raman rotational coherence spectroscopy (RCS) detected by degenerate four-wave mixing is a background-free method that allows to determine accurate gas-phase rotational constants of non-polar molecules. Raman RCS has so far mostly been applied to the regular coherence patterns of symmetric-top molecules, while its application to nonpolar asymmetric tops has been hampered by the large number of RCS transient types, the resulting variability of the RCS patterns, and the 10(3)-10(4) times larger computational effort to simulate and fit rotational Raman RCS transients. We present the rotational Raman RCS spectra of the nonpolar asymmetric top 1,4-difluorobenzene (para-difluorobenzene, p-DFB) measured in a pulsed Ar supersonic jet and in a gas cell over delay times up to ∼2.5 ns. p-DFB exhibits rotational Raman transitions with ΔJ = 0, 1, 2 and ΔK = 0, 2, leading to the observation of J -, K -, A -, and C-type transients, as well as a novel transient (S-type) that has not been characterized so far. The jet and gas cell RCS measurements were fully analyzed and yield the ground-state (v = 0) rotational constants A0 = 5637.68(20) MHz, B0 = 1428.23(37) MHz, and C0 = 1138.90(48) MHz (1σ uncertainties). Combining the A0, B0, and C0 constants with coupled-cluster with single-, double- and perturbatively corrected triple-excitation calculations using large basis sets allows to determine the semi-experimental equilibrium bond lengths re(C1-C2) = 1.3849(4) Å, re(C2-C3) = 1.3917(4) Å, re(C-F) = 1.3422(3) Å, and re(C2-H2) = 1.0791(5) Å.
منابع مشابه
Momentum Transfer Rate Constants for Collision of Cl-with Trans-Dichloroethylene and Para-Difluorobenzene
A classical theory is developed which calculates the momentum transfer rate constant between an ion and a non-polar molecule. The model takes into consideration the effect of diffraction outside the capture limit on the rate constants. The theory is used to calculate momentum transfer rate constant for Cl- with trans-dichloroethylene and para-difluorobenzene. Theoretical results ...
متن کاملProbing the Structure, Pseudorotation, and Radial Vibrations of Cyclopentane by Femtosecond Rotational Raman Coherence Spectroscopy.
Femtosecond time-resolved Raman rotational coherence spectroscopy (RCS) is employed to determine accurate rotational, vibration–rotation coupling constants, and centrifugal distortion constants of cyclopentane (C5H10). Its lowest-frequency vibration is a pseudorotating ring deformation that interconverts 10 permutationally distinct but energetically degenerate "twist" minima interspersed by 10 ...
متن کاملTransient Coherent Raman Scattering in the Time and Frequency Domain
A new type of Raman spectroscopy is presented: After transient excitation of molecular modes coherently scattered Raman spectra are investigated in" a delayed probing experiment. The spectral position of the Raman mode is observed after long delay times. The dephasing time is obtained from the time dependence of the scattered amplitudes. Frequency disturbing non-resonant susceptibilities are el...
متن کاملFemtosecond time-resolved Raman spectroscopy using stimulated Raman scattering
Femtosecond Raman spectroscopy has been developed to investigate ultrafast photoinduced structural changes of materials. Vibrational modes in the photogenerated transient species are measured by stimulated Raman scattering using a Raman pump pulse with narrow bandwidth and a femtosecond supercontinuum probe pulse. The Raman signal can be measured without slowing the temporal response and broade...
متن کاملTemperature Measurements in Flames at 1000 Hz Using Femtosecond Coherent Anti-Stokes Raman Spectroscopy
[Abstract] Single-laser-shot temperature measurements at a data rate of 1 kHz are demonstrated using femtosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy. The excitation of gas-phase Raman lines with spectral widths of 3 GHz by pump and Stokes beams with spectral widths of 3000 GHz is very efficient provided that the pump and Stokes beams are Fouriertransform-limited. The singl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 143 14 شماره
صفحات -
تاریخ انتشار 2015